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SUMMARY 

From the linearized, time-independent, constant depth, shallow water tidal equations in an f-plane for 
a two-layer estuary, two independent modal Helmholtz equations are derived. These modal equations 
are solved using a fifth-degree finite element technique. The first and second space derivatives of the 
complex modal tidal elevations, and thus the modal currents and their first derivatives, are evaluated 
directly from the solution at  each node of the finite element mesh. 

The  Stokes dritt, which is the major part of the residual tidal flow, is evaluated from these nodal 
values of the currents and their derivatives. Good agreement is obtained with the exact analytical 
solution for a wedge-shaped estuary with a wedge angle of v/3, using a mesh of 64 equilateral triangles 
with sides approximately of the wavelength 2vc2/a of a Kelvin wave solution for the short- 
wavelength mode. 
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1. INTTRODUCTION 

When suspended or floating material is moved by currents it is the Lagrangian mean or 
residual currents which will determine how far in which direction such material will travel. 
These residual currents can be due to any combination of the three physical mechanisms of 
tides, density differences and wind-this paper develops a model of the residual current 
caused by a combination of tides and density differences. 

For a velocity field u(x, t) varying periodically with time, where the excursion of a fluid 
particle during one period of oscillation is small compared to the length scale of the velocity 
field, the Lagrangian mean velocity or mass transport velocity uL is given by' 

uL = u+ 1"' u dt' . Vu (1) 

where the overbar denotes the average over a complete period. U is the Eulerian residual 
velocity which, for conditions appropriate to tidal flow, Dyke' found to be an order of 
magnitude less than the Stokes drift 

udt' .Vu 

However, friction and non-linear effects cannot in general be neglected in tidal flows, and 
under such circumstances the oscillation of u(x) becomes unsymmetrical, increasing the 
Eulerian residual u. Nevertheless, field measurements3 have shown significant differences 
between uL and ii, which are probably attributable to Stokes drift. 
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Dyke4 showed that, whereas the residual flow is small in a homogeneous estuary, if there 
are two (or more) layers of different density, there is a much larger residual flow in each 
layer (in different directions). The method of modal separation which he used is reproduced 
in the next section with slight changes in notation. 

2. THE TIDAL EQUATIONS AND THEIR ANALYTICAL SOLUTION 

The following equations4" describe linear two-dimensional tidal motions in a two-layer sea. 

aU' 

at 
-+f xu'+gVC;'=O 

a - (l' - 5") + h'V . U' = 0 
at  

(3) 

(4) 
adr 
at 
-+f xu"+ gU((1 +a)" + ay") = 0 

and 

( 5 )  
- ay" + hf'V . u" = 0 
at 

In these equations, g is the acceleration due to gravity, h is the equilibrium total depth 
(= h'+h"), h' and h" are the equilibrium thicknesses of the upper and lower layers, 
respectively, 6' and 5" are the departures of the levels of the sea surface and the interface 
from equilibrium. ur and urr are the horizontal fluid velocities in the layers. a = (p"- p')/p'' is 
the fractional density difference between the two layers. f is a vector directed vertically 
upwards, with magnitude f equal to the Coriolis parameter, which is assumed constant 
(f-plane approximation). Rattray showed that (2)-(5) can be split into two independent 
modes if the following substitutions are made, to lowest order in a: 

(6) 
1 

* - h  
u - - (h'u' + h"d') 

and 

Mode 1 (the barotropic mode) represents the depth averaged motion of the water body: l1 is 
the surface water elevation and u1 is the mean horizontal current. Mode 2 (the baroclinic 
mode) represents the depth variation of the current and the movement of the interface 
between the top and bottom layers. u2 is the change in current across the interface, and l2 is 
proportional to the difference between the level of the interface and the level the interface 
would have had were the baroclinic mode absent. 

For any one harmonic tidal constituent (say M2), both modes will by definition have the 
same period. As we shall see below, the wavelength of the baroclinic mode will be much 
smaller than that of the barotropic mode, and the Coriolis effect will become important at 
correspondingly smaller scales. 
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2.5 km A,&)- / /  

Figure 1. Cotidal and co-range lines for the interfacial 
mode 2 (mode 1 varies very slowly) 

If we substitute 

and 
5, = Re (2, exp i d )  

u, = Re (U, exp iat) 
(m = 1,217 

where a is the tidal angular frequency, we obtain the Helmholtz equations for both models, 
subject to appropriate boundary conditions, which are discussed below: 

V2Z, + k$Z, = 0 (rn = 1,2) 
where 

k,  = ( c T ~ - ~ ~ ) ~ " / c ,  

cm = J ( g h ,  ) 

with h, = h and h2 = ah'h''/h. 
The boundary conditions for (12) are 2, = 2, on the open parts of alA of the boundary, 

and U, . n = 0 on the coastal parts a2A of the boundary, where n is a vector normal to the 
coast. The U, are determined by 

U, =- ( i d &  -f X V G )  2-f 
and hence, in terms of elevation derivatives, the coastal boundary condition becomes 

a& a z m -  ia-+ f - - 0 
an as 

where n is the outward normal and s is directed anticlockwise around the boundary. 
In the upper layer the Stokes drift is given by 

U: = [: ~ ' ( t ' )  dt' . VU' (14) 

with a similar expression for the lower layer, where the overbar denotes an average over a 
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/ 

Figure 2. Stokes drift for the upper layer 

complete tidal period. Using the complex notation of (ll), we obtain 

(15) 
h" hN2 

U1. VUT+-(Ul. VU:+U2. VUT)+7U2. VU; 

VUT--(U,. VU$+U2.VUT)+--UU,.VU$ 

2cr h h 
and 

(16) 
h' h l2 

2 a  h h2 
Packham and Williams6 obtained closed analytical solutions for the tidal Helmholtz equa- 
tions (12) for a wedge-shaped estuary with angle d ( 2 n  + l), where n is an integer. Dyke' 

. . 

. ) - ) - .  L* .-*- 4- 4-d- 

Figure 3. Stokes drift for the lower layer 



TIDAL RESIDUAL CURRENTS 65 

calculated the Stokes drift for a two-layer estuary of wedge angle d 3 .  The Stokes drift field 
for both layers in this estuary is shown in Figures 2 and 3 ;  the following values were used for 
the physical quantities: 

f = 1 . 2 0 9 ~ 1 0 - ~ ~ - ' ;  ~ = 1 - 4 0 5 X l O - ~ ~ - ~ ;  a = 0 - 0 1  

JZ,I = 1-918 m at origin; lZ,l= 4-666 X m at origin (17) 
g =9.82 ms-'; h = 2 0 m ;  h'=5 m; h"= 15 m 

The choice of the relative magnitudes of lZ,l and \Z,l can be justified by requiring that the 
fractional change in layer thickness due to each mode is of the same magnitude. 

3. NUMERICAL SOLUTION 

Since real coastlines and bottom profiles have irregular shapes, it would be advantageous to 
choose a numerical method which can be used on an irregular mesh with, for example, 
greater resolution near the coast than out in the open sea. Various types of finite element 
method have been used successfully in engineering and other fields particularly for time 
independent problems and for sinusoidal oscillations, on such irregular meshes. 

We therefore decide to see if a finite element method were suitable for this particular case. 
Because of the mixed nature of the coastal boundary condition, involving both normal and 
tangential derivatives, a variational finite element formulation is difficult. However, a 
Galerkin formulation is straightforward. 

In order to build a Galerkin type finite element model, the Helmholtz tidal equation is 
written in the following weighted residual form: 

(0'5 + k'5) 65 dx = 0 

where 65 is an arbitrary functional variation of 5. (The Z, in (12) have been replaced by 4' 
and k,,, by k ) .  

Integrating by parts, we obtain 

a5 
aA an  

( - V f .  V 65+ k2g65) dx+ 5 - Sf ds = O  

where af;lan is the outward normal derivative of 5 on the boundary aA of the domain A. aA 
is composed of the open boundary &A, on which f is prescribed, and thus S c = O ,  and the 
coastal boundary &A, on which the zero normal velocity condition requires 

a f  85 iu-+ f- = 0 
a n  as 

where s is directed anticlockwise around dA. 
We thus have 

(-Vg. V 65 + k25 65) 

Now we expand f in terms of a number, N, of basis functions 4j:  
N 

f = c 4if, 
j = 1  
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Since St; is an arbitrary small functional variation, (21) will be valid for S ~ ; = E # ~ ,  1 = 

1 , 2  ,.,., N,so  N 

C Mjlj = O  (23) 
j = l  

where 

It can be seen from (13),(15) and (16) that in order for the Stokes drift to be evaluated 
sufficiently accurately, there must be sufficient accuracy in all the first and second derivatives 
of t;. Linear basis functions over triangular elements are certainly not adequate, as the second 
derivatives are zero almost everywhere. 

For a parallel sided canal, with boundary conditions giving rise to a single Kelvin wave 
solution of the form 

l = A e x p - y e x p i  at - -x  , 

we found that quadratic basis functions over 6-noded triangular elements gave reasonable 
values for the elevation, but that the derivatives were inaccurate.* The second derivatives 
were less accurate than the first derivatives, and, being constant over each element, had 
marked discontinuities at the nodes, giving rise to ambiguities in evaluating terms such as 

In principle, it is possible to use cubic basis functions, where the coefficients ti are the 
values of t; and its first derivatives at the vertices of each triangular element.’ We found, 
however, that the first derivatives were still inaccurate, and there remained the problem of 
the discontinuous second derivatives. 

For the above reasons we chose basis functions in which the coefficients Jj in (22) are the 
values of t; and all its first and second derivatives (6 values in all) for each of the 45 nodes in 
the mesh of 64 triangular elements shown in Figure 4. 

C ( 9  

u1. vu;. 

. . .... . c 
A 

Figure 4. The 64-element triangular mesh. AB is the open 
boundary d,A. BCA is the coastal boundary d,A. Mesh size is 

2.5 km 
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The basis functions used are the fifth degree, 18 parameter family of Hermite interpola- 
tion polynomials described by Mitchell and Wait (Reference 9, p. 74), amended where 
necessary to take account of the fact that the triangular elements are equilateral rather than 
right-angled and isosceles. [NB: Mitchell and Wait's basis function (p&'*"' should be p:(10p2- 

These basis functions give continuity of first derivatives everywhere, and continuity of 
second derivatives at the nodes. For the particular basis functions used, the triangular mesh 
must be derivable by a linear transformation (or a suitable non-linear transformation) from a 
mesh of isosceles right-angled triangles. If we are to use a mesh of arbitrary triangles, to 
approximate more closely the shape of a real estuary, basis functions similar to those used by 
Bell" must be used, the polynomial coefficients of which are evaluated by inversion of a 
21 x 21 matrix for every element. 

Numerical integration was used to evaluate the matrix elements Mli for each triangular 
elements, and the elemental matrix elements were assembled (by summation) into a square 
global unsymwetric banded complex matrix of size 

6 x (number of nodes) x [ 12 x (maximum difference between node numbers + 1) - 11 
In order for the numerical integration to be exact, 36 point 11th degree Gaussian integration 
was used for the integrals over the triangular elements'1712 and 5 point 9th degree Gaussian 
integration was used for the integrals along the coastal boundary segments. 

For f to be specified sufficiently accurately along alA, it is necessary to specify the nodal 
values not only of f but also of its first and second derivatives along the boundary. It is 
therefore necessary to apply appropriate rotational transformations to the matrix elements 
which involve the derivatives of f at the nodes on &A. If the axes (s, -n) can be obtained 
from (x, y)  by an anticlockwise rotation of 8, then 

15PZ + 6P2 + 15P:PA.I 

where 
1 

R = ~ '  0 0 

0 
0 

0 0  0 0 0  
c -s 0 0 0  
s c  0 0 0  
0 0 c2-s2 cs -cs 
0 0 - 2 c s  c2 s2 
0 0 2 c s  s2 c2 

with C = cos 8 and S =sin 8. 
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The appropriate transformations to be applied to the global matrix, for node 1 on dlA are 

N 
M;{=W,R,j=l ,  . . .  1-1,1+1, . . . ,  - 

6 
N 
6 
__ M~, '=RTM~, , j= l  ,... 1-1 ,1+1, .  . . ,  

and 
Ms,' = RTMhR 

where wj is the 6 x 6  submatrix relating node 1 to node j. 
Once the rotations have been performed for all nodes on &A, the prescribed values of 5 

and its first and second tangential derivatives are set as described by Connor and Brebbia 
(Reference 13, p. 78). Their method sets all the matrix elements involving the prescribed 
values to zero except the diagonal element which is set to 1, and makes appropriate 
adjustments to a column vector, which we shall call P, which is initially set to zero to 
represent the RHS of (23). 

The system of linear equations can now be represented as 
N 

j = l  

which is solved for the unknown J; by a method of Gaussian elimination similar to that 
described by Connor and Brebbia (Reference 13, p. 83). The inverse transformation to (25) 
then performed for all the nodes on a,A, and the nodal values of U and VU are obtained by 
applying (13) to the nodal values of the first and second derivatives of 5. The Stokes drift at 
each node can then be obtained by applying (15) and (16). 

The above method was used to determine the Stokes drift field for the two-layer wedge 
shaped estuary of angle wl3 with physical quantities as specified in (17). The values of J and 
its tangential derivatives on the open boundary &A were introduced into the rotated system 
of linear equations (28) as described above. 

The length of the sides of the elements for the 64-element mesh is approximately & of the 
wavelength 2wc2/a of a Kelvin wave solution for mode 2. 

We found that the 64-element mesh produced a satisfactory solution for mode 2, but the 
longer wavelength mode 1 developed numerical errors which reduced the accuracy of the 
velocity and its derivatives to an unacceptable extent, giving rise to inaccuracies of up to 20 
per cent in the resulting Stokes drift. 

These errors may be due to rounding, since we are using the second spatial derivatives of a 
mode with a very long wavelength-in order of magnitude terms, where Ax is the mesh size 
(2.5 km), 

( AX2 2)pI - 2 x 10-4 (29) 

The accuracy to which the node co-ordinates and boundary conditions were given was 6-7 
significant figures (- which, in computational terms, is not negligible compared with 
the above parameter. For more realistic physical problems with irregular coastlines and 
frictional effects, the node 1 derivatives will increase markedly, with parameter (29) 
increasing correspondingly, so we would not expect rounding to give rise to such large errors. 

In fact, the numerical errors were eliminated when the equation for mode 1 was solved on 
a 16-element mesh and the values of the mode 1 variables at the intermediate points were 
obtained by interpolation, using the basis functions as interpolation functions. 
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Figure 5. Error in finite-element calculation of Stokes drift, 
for the upper layer 

The Stokes drift field for the above finite-element solution is in satisfactory agreement 
with the analytical result shown in Figures 2 and 3: the errors are shown in Figures 5 and 6. 
It can be seen that the maximum errors (about 5 per cent) occur at the nodes at either end of 
the open boundary. 

The finite-element program was written in a version of Fortran TV and was run on the 
Aberdeen University Honeywell Level 66 computer. It took 34 minutes to run, using 86k 
words of core storage. Neither the matrix assembly process not the Gaussian elimination 
process was optimized: optimization would lead to a significant reduction in run-time. 

1x10-2 //-/ 

1x10-2 

0.1 mm/s 

Figure 6. Error in finite element calculation of Stokes drift, for the 
lower layer 
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The same finite element method was also used to solve the linearized tidal equations in a 
rectangular b a s h 8  Good agreement was obtained with G. I. Taylor’s solution of the 
p r ~ b l e m . ’ ~  

It should be possible to verify the numerical method in the laboratory, using salt solutions 
of varying density, with the apparatus mounted on a rotating turntable. Field verification 
should also be possible, once the model is developed further, to include the effects of 
variable depth and friction. Suitable measurements of currents, preferably including some 
Lagrangian techniques such as drogues or  dye tracers, would need to be made in a stratified 
estuary or other region, preferably deep enough for the tidal motions to be approximately 
linear. 

4. CONCLUSION 

It can be seen from the previous section that a fifth-degree finite element method, using 
triangular elements similar to each other, with sides about & of the wavelength of a Kelvin 
wave solution for the interfacial mode, provides reasonably accurate values for the Stokes 
drift in a wedge-shaped two-layer estuary of constant depth with zero bottom friction. By 
making suitable alterations to the finite element method, it should be possible to use 
triangular elements of arbitrary shape, and thus determine Stokes drift fields for estuaries 
with more general shapes. 
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